您好、欢迎来到现金彩票网!
当前位置:刘伯温论坛 > 图像分类 >

从小白到入门:用Keras进行图像基础分类

发布时间:2019-06-19 06:22 来源:未知 编辑:admin

  【IT168 资讯】在这篇文章中,将解释一些在keras中经常需要的常见操作。首先,如何保存模型并使用它们进行预测,从数据集中显示图像并从加载系统中图像并预测其类别。

  训练模型是一个非常缓慢的过程,没有人希望每次都这样做,幸运的是,我们只需要训练我们的模型一次,保存,然后就可以随时加载,并用它来预测新的图像。

  我们在这里所做的是从保存的模型文件中加载模型的参数,评估函数在测试数据集上运行预测,并返回我们预测的准确性。

  到目前为止,已经演示了如何保存模型并稍后使用它们进行预测,然而,这些都是无聊的事情,真正的协议是能够加载一个特定的图像,并确定它属于什么类别。

  这里我们选择一个随机的图像,在这个例子中,从测试集的索引130中,我们创建了一个扁平的副本,它被重新塑造。

  现在已经有了预测,我们使用matplotlib来显示图像和它的预测类别。

  运行它,得到的输出应该是这个。比较简单,因为已经建立了一个基本的数字识别系统。

  但是,如果想引入未包含在测试集中的图像,那么请将下面的图像保存到系统中,并将其复制到python文件所在的目录中。

  你可能会注意到这里有一些新东西,首先是从keras.preprocessing导入图像。

  在第一行中,我们从磁盘加载图像,并指定它应该调整大小为28 x 28 x 1,请记住,这是原始mnist图像的尺寸,所以它的优点就是保持恒定。

http://airgomusic.com/tuxiangfenlei/376.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有