您好、欢迎来到现金彩票网!
当前位置:刘伯温论坛 > 图像复原 >

基于Matlab的图像增强与复原技术在SEM图像中的应用[图]

发布时间:2019-06-16 13:13 来源:未知 编辑:admin

  改善图像质量是当今研究的热点。这里利用Matlab的工具函数,采用灰度直方图均衡化和低通滤波,以及图像复原技术对一幅上皮细胞SEM(即扫描电子显微镜图片)图像进行处理,并比较他们的效果。实验结果表明,使用Matlab工具箱大大简化了编程工作,为生物医学图像处理提供了一个技术平台,综合运用直方图均衡化和低通滤波和自适应维纳滤波好于简单的使用某一方面的技术,如直方图均衡技术,更好地改善了SEM图像质量,使低对比度图像得以改善,上皮细胞与背景的区分更加明显。

  根据国内外的相关文献,研究和发展图像处理工具,改善图像质量是当今研究的热点。图像增强与复原是一种基本的图像处理技术。其按照特定的需要突出一幅图像中的某些信息或强化某些感兴趣的特征,将原来不清晰的图片变得清晰,使之改善图像质量和丰富信息量,提高图像的视觉效果和图像成分的清晰度,加强图像判读和识别效果的图像处理的方法。图像增强和复原的目的是对图像进行加工,以得到视觉上更好、更加容易区分的图像。

  直方图均衡化(Histogran Equalization,HE)是利用直方图的统计数据进行直方图的修改,能有效地处理原始图像的直方图分布情况,使各灰度级具有均匀的概率分布,通过调整图像的灰度值的动态范围,自动地增加整个图像的对比度,以使图像具有较大的反差,大部分细节清晰。传统的直方图理论如下:

  输入的直方图用H(p)表示;输入的灰度级范围为[p0,pk],其目的是找到一个单调的像素亮度变换q=T(p),使得输出的直方图G(q)在整个输出亮度范围[p0,pk]内是均匀的。直方图可以看作是离散的概率密度函数,变换T的单调性意味着有如下公式成立:

  式(1)中的求和可以理解成离散概率密度函数的累积。假设图像有M行和N列个像素,则均衡化的直方图G(q)就对应均衡化的离散概率密度函数f,其函数的值是一个常数:

  式(2)的值替换式(1)的左边,对于理想化的连续概率密度来说,就可以得到精确的均衡化直方图,这时式(1)变化为:

  式(4)中的积分被称为累积的直方图,在数字图像中用求和来近似,因此结果直方图并不是理想地等同的。在离散情况下,对式(4)的连续像素亮度变换的近似为:

  对于图像这样的二维信号,经过傅里叶变换可以将其空间域转换到频率域,在频域中可以进行图像的增强操作。在分析图像信号的频率特性时,对于一幅图像,直流分量表示了图像的平均灰度;大面积的背景区域和缓慢变化部分代表了图像的低频分量,而它的边缘,细节,跳跃部分以及颗粒噪声都代表图像的高频分量。因此,在频域中对图像采用滤波器函数衰减高频信息而使低频信息畅通无阻的过程称为低通滤波。通过滤波可以去除高频分量,消除噪声,起到平滑图像去噪声的增强作用。

http://airgomusic.com/tuxiangfuyuan/326.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有