您好、欢迎来到现金彩票网!
当前位置:刘伯温论坛 > 图像几何学 >

关于几何光学的单幅二维图像的三维重建

发布时间:2019-08-04 23:31 来源:未知 编辑:admin

  88第六章 基于几何光学的单幅二维图像三维重建 单幅二维图像进行三维重建一直是计算机视觉领域的难题,因为每一图像 点都有无限多个场景点与之对应。故从光学成像的角度分析,单幅二维图像三 维重建问题好像不存在较为通用的解决方案。然而反思人类自身视觉经验,仅 用一只眼睛观察单幅二维图像,同样能感觉到栩栩如生的三维世界。而且完成 这一过程是不需要任何意识努力,好像是全部自动进行的。这些表明人类视觉 系统能轻松解决这个问题。人眼与照相机的光学成像机制几乎完全相同,故模 拟人类视觉系统,计算机对单幅二维图像进行三维重建又是完全有可能的,这 正是本章研究工作的基本思路与逻辑起点。 单幅二维图像三维重建问题的难点在于对单幅二维图像深度估计,本文第 五章提出解决解决这一问题的有效方法。本章将在第五章提出的深度模型(图5-1) 的基础上,研究基于几何光学的二维图像三维重建算法。本质上讲,大小恒常 性变换就是一种单幅二维图像三维重建过程。故本章也对基于心理学的重建方 法与基于几何光学的重建方法进行比较,继续探讨在计算机视觉中应用视觉心 理学结论的适应性问题。 6.1 引言 计算机视觉的研究目标是使计算机具有通过二维图像认知三维环境信息的 能力,然后达到认识世界的目的,故二维图像三维重建一直是计算机视觉的主 要内容。计算机视觉奠基人 Marr 名著《Vision》的中心内容就是力图阐述如何 从二维图像出发,重建客观世界物体的三维模型。从上世纪60 年代以来,许多 学者从不同的角度,提出了不同的三维重建方法,主要分为以下五类:多相机 立体视觉、光度学立体视觉、用阴影求形状、基于模型重建及三灭点重建等, 下面分别叙述。 [Stewenius2005][Rajagopalan 2004][Cheng 2005] [Williams 2005] [马颂德1998, pp72-93]。这是指用两架或多架照相机对同一空间 场景进行拍照,得到同一场景不同视角的两幅或多幅图像,并用这些图像恢复 三维空间几何形状的方法。如图6-1 所示,用两架照相机C 同时观察三维空间中 P’。如果我们能确定照相机 得到图89 为两幅图像间的对应点。因此空间点 的交点,所以它的三维位置是唯一决定的。这就是多相机立体视觉的原理。这种方法的优点是,只要找到两幅图像间的对应点,可以精确地计算出空 间点的三维坐标,同时可以避免边缘检测、图像分割等难题。这种方法缺点是, 在两幅图像间,寻找对应点也是计算机视觉中难题之一。虽然人们已经提出了 各种有效约束,如极线约束、相容性约束、唯一性约束、相似性约束、连续性 约束等[Marr 1982, pp114-121],并提出了多种不同方法,如相关法、特征点匹配 法、极线整体匹配法,但是对应点匹配问题并没有得到完美解决,有时不得不 使用第三个照相机。 光度学(Photometricstereo) 立体视觉[Nayar 1990][ 马颂德 1998, pp203-205]。与多相机立体视觉方法不同,该方法使用同一相机在不同的光源照 射下对同一物体拍摄多幅图像。因为光源不同,多幅图像的强度值也就不同。 图像强度值是物体表面法向量(朝向)、表面照明方式、表面反射率三者的函数。 如果已知光源方向,仅考虑表面散射反射率k 少需要三个不同光源(即三幅图像)。图6-2显示了这种方法的原理。具体计算过 程分两步进行:先计算物体表面单位法向量n;再由 通过求解偏微分方程计算物体的相对几何形状。与一般的立体视觉相比,光度学立体视觉的一个重要优 图6-1 双照相机立体视觉三维重建示意图。 视觉心理学在计算机视觉中的应用研究 90 点是不需要进行图像间的对应点匹配,这是因为物体与照相机的相对位置没有 变化。但这种方法也有不少缺点。首先,这种方法需要至少三个已知方向的相 同光源,分别照射物体以得到不同的图像,这在现实中很难做到。其次,要假 设场景中的照明性质与表面性质处处相同。 (3)用阴影求形状 [Horn 1989] [Forsyth 2003,pp80-85][Castelan 2004][严涛 2000]。这种方法的原理与光度学立体视觉方法的原理基本相同,不同的是该方 法只需一个已知光源及在该光源照射下得到的一张图像。如果假定已知表面散 射反射率k ,则计算表面单位法向量(朝向)n还有两个独立参数,但只有一张图 像,故需要其它的约束条件。通常假定表面是光滑的,表面法向量(朝向)的变化 也是光滑的(即可微的)。对这个假定的通俗理解是:假如我们在一个阳光照射的 山坡上行走,通过观察,知道了所站位置的表面朝向及朝向的局部变化情况, 那么当沿某一方向在山坡上走动时,就能根据阴影来推断出新的位置的局部朝 向。所以这种方法的求解过程要解非常复杂的非线性方程,需要沿图像中的路 径进行逐次积分,而这些积分路径也只有在积分的过程中确定[Marr 1982, pp260]。这种方法在继承光度学立体视觉方法优缺点的同时,只需要一个已知光 源,代价是引入更严格的约束与更复杂的计算。它也是从单幅二维图像进行三 维重建的最早、最有影响的尝试。 (4)基于模型重建 [Ryoo 2004][Wilczkowiak2001][Jelinek 2001][Forsyth 2003, PP401-426][马颂德1998, pp229-234]。这种方法先要根据形状、几何特征的差异 图6-2 光度学立体视觉三维重建示意图。 照相机 光源3 光源1 光源2 物体 91 图6-3 基于模型三维重建方法示意图。 模型库 (预先设计) 1.输入图像 2.部分图像特性 4.选定模型物体 5.部分物体特性 6.求投影矩阵 7.物体投影图像 8.匹配否 3.其它图像特性 9.输出三维坐标否,重新选择模型或物体特性 建立物体模型库。因为物体的几何特征不是分散在整个图像中,所以在图像与 模型之间,只要对应了图像物体一小部分特征,就可以在模型中发现图像物体 的大部分特征。这种方法又被称作假设—验证方法,它的主要重建过程示意图 见图6-3,由三部分组成。首先,假设输入图像的一部分特性与模型库中某物体 的部分特性对应,并由这些对应关系计算出相机的投影矩阵(图6-3 步)。然后,用此投影矩阵对整个选定的模型物体进行投影(实质上是一次模拟照相机成像过程),生成模型物体的投影图像(图6-3 步)。最后,将物体的投影图像与输入图像比较,如果满足规定的相似性要求,则选定的模型物体 的坐标即是对应的输入图像重建的三维坐标,否则重新选择模型物体或物体的 特性,进行新一轮的计算过程(图 6-3 步)。这种重建方法的主要优点是只需要单幅图像,计算过程清晰,模型库可预先设计,可对整个过程进行 有效的自上而下的控制。主要缺点是物体模型的表示比较困难;当模型库很大 时,计算量很大。所以,这种方法主要适于工业应用场合。 三灭点重建[Criminisi 2001, pp94-95]。这种方法先求出图像中的三个灭 点,设为V 不在这三个灭点构成的灭线 所示。这样 沿着OX方向,场景Q’与参考面 YOZ 的交点为 YZ’(我们称点 YZ’在图像中对应的像点为 YZ的物理含 义相同,而且只要知道了这三个点的一个,其余两个点的位置就能通过三个给 视觉心理学在计算机视觉中的应用研究 92 定的灭点的位置计算出来。三个灭点V 可用图像中的三组会聚线求出,Criminisi 提出,只要标定了Q XY YZ三者之一,像点Q 对应的场景点Q’ 的坐标就能在仿射意义下进行三维重建。此方法的主要优点是只需要一幅图像, 对光源也没有要求,计算复杂度也不高。它的缺点是图像中很少同时存在三组 会聚线,故得到三个灭点的可能性不大。另一个不足是脚点有时很难从图像中 得到。 总之,学者们已从不同的角度对三维重建问题进行了卓有成效的研究,但 用单幅二维图像进行三维重建仍然是一个有挑战性的问题。 6.2 单幅二维图像三维重建模型 从欧氏几何学的观点,客观世界能被抽象成无限扩展的三维空间。这种三 维空间可分解成无限多个相互平行互相紧挨的平面。而平面又可分解为无限多 个相互平行的直线,直线可进一步分解成一个个的点。故对三维空间的重建可 以归结为构成三维空间所有点的重建。但如果纯粹地从欧氏几何学出发,用单 幅二维图像无法完成三维空间的重建任务。这不仅因为一幅二维图像仅仅是欧 氏三维空间的一个平面而已,还因为每个图像点是空间中无限多个点中的任意 一个形成的(如图6-1 中,空间直线O 任何一点P’或P’’都可投影产生像点P 然而人类视觉系统却能够轻松地完成这种任务,故我们先分析人的视觉空间与图6-4 三灭点三维重建示意图。 93 视觉环境(Environment)。 6.2.1 人类视觉空间的特点 人的视觉空间本质上不同理想的欧氏三维流形。人类视觉空间是各向异性 (如上、下、左、右是不同的),有限有界的;而后者是各向同性、无限无界的。 人类视觉空间更类似于超几何空间而非欧几里得空间[Mach 1999]。人类视觉感 知是非常实在的。理想的几何空间仅存在于人们的想象中,是无法看见的。人 的视觉环境与物理世界也很不相同。从微小的原子到巨大的星体,物理世界无 所不包;而视觉环境只是其中的一小部分,是由可用生态尺寸(从毫米到米)测量 的陆地物体构成的。 人类居住的地球主要由陆地,水与空气组成。大地与空气间的表面即地面 (Ground)垂直于重力方向,地面倾向于被感知为平坦的表面。构成地面的单元(沙 粒、草地、人工地板等)也倾向于被感知为均匀分布的。水与空气间的表面在视 觉环境中可以看作另一种地面。地面上有各种各样的物体。地面为这些物体提 供稳定支撑。位于地面与物体之上(或之间)的开放空间构成了天空。地面的特殊 情况是室内的地板,天空的特殊情况是室内的天花板。 在天地之间,有三种状态的物体:固体、液体与气体。液态的形状是由包 围它的固态容器物体的形状决定的。气态物质基本上没有形状,对它们的识别 是很难的。故在视觉环境中,最重要的是固体物体。计算机视觉领域中的物体 一般也是指固体。固体物体是可以存在时间较长的物质,一般由闭合或几乎闭 合的、不透明的表面构成;固体物体的一个重要特性是刚性(Rigidity),即它表面 的形状是不容易改变的。常见的气体是空气,它充满在地面与物体之上(或之间) 空间之中,一般为透明的,能迅速以直线方式传播光线。 地面与天空是视觉环境中最重要的、最基本的表面,它们是其它表面的参 考面。如果看不见脚底的大地,如果看不见头顶的天空,我们根本无法感知天 地之间纯粹的空间(Empty space)[Gibson 1979]。所以人类视觉空间可以抽象如下 模型:以天空云彩为顶,以地面为底,物体附着在地面之上,在它们之间是纯 粹的空洞(充满着空气)。为了从二维图像感知到三维物体,首先必须从图像中把 对应天空与地面的图像区域检测出来。其次,从其余的图像中分离出不同的图 像物体区域。 通过上述说明,现在可以得出人类视觉系统完成单幅二维图像三维重建的 视觉心理学在计算机视觉中的应用研究 94 两个关键之处,这对本章的重建模型具有最重要、最本质的意义。 因为空气一般是透明的,且能传播光,故三维空间中的不同物体,同一物体的不同表面能同时被投影到同一二维图像平面中,从而使得单幅二维图像 平面有可能对应空间中的不同平面。这产生了正反两方面的作用:一方面使图 像点所对应的场景点的位置难以确定,这是单幅二维图像三维重建之所以困难 的本质原因;另一方面也为从单幅图像三维重建提供了可能,因为该幅图像中 已经包含空间三维信息,只是恢复这种信息比较困难。 刚性物体的表面是闭合或几乎闭合的,构成它的空间点是相互连通的,故对物体上任何一点 M,沿着物体上的某条路径,总可以找到它在地面上的垂 直投影点,称它为点M的脚点M脚。例如,在图6-5 中,场景点P’是场景点Q’ 是Q’的像点Q在图像中的脚点。地面是人类图像感知的最重要的参考面。由脚点M脚在地面的位置,运用式(5-4),可以决定像点 M的相对深度(z 方向坐标)。由像点M与它脚点 M脚的图像距离可以决定像点M 对应场景点的离地面的高度(y 方向坐标)。同理,可以决定像点M对应场景点的 离相机光轴的水平距离(x 方向坐标)。这样,任一像点M的空间三维坐标就可由 它在图像中的位置与它的脚点 法确定,对像点M的重建是很难的。人类视觉系统也有这个缺陷,如在黑夜中,我们无法决定空中某亮光点的具体位置。 6.2.2 基于几何光学的三维重建模型 模拟人类视觉,现在给出本章使用的单幅二维图像三维重建模型,见图6-5, 它是图5-1 的扩充。先进行符号约定: 图像点用大写字母表示,如像点P、Q,M,N,它们对应的第一个场景点用相应字母加一个单引号标记,如P’,Q’,M’,N’;对应的第二个场景点用 相应字母加两个单引号标记,如Q’’。 任意两点P,Q的距离用d(P,Q)表示。 这个模型的输入是由被动视觉方法得到的单幅二维图像,每个图像点的坐 标位置以像素为单位,如像点M(x,y);它的输出是各图像点对应的场景点的三 95 图6-5 考虑实际地面的相机针孔成像模型示意图(图像平面的比例被相对放大了)。在此模型中, 实际地平面被假定是理想平面,相机光心离地面的物理高度(h )是重要的感知因素,f是针孔到 像平面的垂直距离。像平面(Image 在图像地面上的脚点。灭点(Vanishing point)V 是相机光轴穿过相机图像平面所形成的交点, 它一般位于平面的中心,即相机胶卷平面的中心。在相机光轴(Optical axis)在地平面上的 垂直投影为直线AEU’P’,其中点E 是相机针孔 (Pinhole) O在地平面上的垂直投影,场景点P’ 是场景点N’在直线EU’P’的垂足,点A 与针孔O共面的,这个平面记作,它既垂直于平面又垂直于平面。直线QQ’ 与地平面的交点为 Q’’,该点应位于直线 AEU’P’上。像平面的中间线 把整个图像平面分成两部分:图像天空(Image sky,下面部分)与图像地面(Image ground, 上面部分)。图像坐标轴与原点、三维空 间的坐标轴与原点如图设置,X 是图像点M对应的场景点 的三维坐标。维坐标,如像点M的对应场景点M’(X,Y,Z)。 相机模型是考虑实际地面的针孔成像模型,在此模型中,相机离地面的高 度是针孔模型中重要的因素;相机像平面被假定是与实际地面垂直的。假定图 像点的脚点存在(否则,用本章的方法无法进行三维重建)。 视觉心理学在计算机视觉中的应用研究 96 6-5中的像平面是倒立的,原点 设为像平面底端边界,方向如图向里;y轴为右边边界,方向如图向上(在后面 实验中,图像是正立的,原点位置、坐标位置与方向要进行相应的调整)。三维 空间的原点设为针孔 在地面的垂直投影点E;三维空间的 标轴为直线OE,方向如图所示向上;Z坐标轴为实际地面的中轴线EU’P’(相 机光轴在地平面的垂直投影线),方向如图所示。 因为我们的目的仅是验证三维重建模型的有效性,所以对图像地面、天空 与物体等图像区域的分割、对脚点位置的标定等工作都是手工进行的。 这个三维重建模型有很多实际应用,如移动机器人对空间物体的体积估计、 基于计算机视觉的车辆自动导航系统对前面车辆或其它物体准确定位与测量等 等。在这些应用中,地面几乎是理想平坦的。地面被假定是平的,这合乎人的 感知经验[Gibson 1979, pp10,33,131]。在日常生活中,平坦的视觉局部参考地面 是很容易找到的。人工的地面几乎都是平坦的。当我们欣赏湖光水色时,水面 是平坦的。当我们散步时,局部路面看上去一般也是平坦的。 6.3 像点三维坐标计算 如上章所述,根据几何光学知识与图6-5 中的成像模型,客观世界中于实际 天空与实际地面之间的地平线(灭线),一定会沿着光轴投影到像平面上,形成 6-5中的平面,点 是针孔到像平面的垂直距离。(图像平面的比例被相对放大了)97 一条直线,记作L 为像平面的中间线(Middle line),并称L 中点为像平面的灭点(Vanishingpoint)。L 也必然将像平面分成两部分:图像地面(Image plane)与图像天空(Image sky),它们分别是 由实际地面与实际天空投影形成的。当像平面与实际地平面垂直时,L 面的水平中轴线 所示,图像点 的对应场景点为M’。M’在实际地平面上的垂 直投影点为场景点N’,它即点M’的脚点。场景点N’在图像平面投影形成的像 是像点M在图像平面上的脚点。图像点M对应的场景点M’的三维坐标[X ]如图6-5 所示。Z 的感知深度,用式(5-4)很容易求出。因为空间四边形Q’M’ 与场景点N’间的距离d(P’, 就是场景点P’与场景点Q’间距离d(P’, Q’),也即场景点 Q’离实际地面的高度。因为三维空间的对称性,并根据相机 成像的高斯放大率公式 [刘涤民1990, pp36-37],只要求出了Y 也可同理求出。下面详细介绍Y 的计算原理。图6-5 表明,点P, 与针孔O共面的,这个平面记作,它既垂直于平面又垂直于平面。为了更容易看清各点之间的关系,平面 被单独显示在图6-6 中。从图6-6 可以看出,线段P’E 的长度,即Z (6-1)这里,f 是针孔到像平面的垂直距离,一般为成像时的焦距。线)也容易看出,三角形Q’ P’与三角形QQ’’A是相似的,即 就是场景点P’与场景点Q’间距离d(P’, Q’),故有 视觉心理学在计算机视觉中的应用研究 98 (6-4)先分析等式右边第一项。在实际的成像过程中,相机的CCD 感光器(或胶卷) 的对角线 毫米,d(Q ,V)最大不到它的一半(10 毫米);而相机成像时 的高度h 一般在1米(1000 毫米)以上,即h (6-5)再分析等式右边第三项,针孔到像平面的垂直距离f 一般为成像时相机的焦 距,通常小于100 E)通常在1.5米以上(近距离翻拍除外) (6-6)将式(6-5)、式(6-6)代入式(6-4),可得 (6-7)再将式(6-1)、式(6-2)代入式(6-7),可得 的计算公式(6-8)比较简单,等式右边由三项构成。第一项是成像时的相机高度h 应的图像点P、Q间的图像距离d(P,Q);第三项是像点P 的图像高度(图像高度 的概念见本文5.3 的距离。摄影时,如果使用三角架,h 是非常容易测量的,较好的三角架能直接读出相机的高度。后99 两项能直接从图像中得到。同时,可以看出,在成像过程中,Y 高斯放大率公式告诉我们,在同一共轭面内,理想透镜成像的放大率是个常数,这也是垂直于光轴的平面物体所成的像与物相似的原因 1990,pp36-37]。所以,X (6-9)结合式(6-1)、式(6-8)、式(6-9),我们能得到图像点 (6-10)在式(6-10)中,各种距离是用米制单位表示的。然而,用图像数据中,d(P V)通常使用像素单位(Pixelunit)表示,而h 依然是用米制单位表示。现把d(P, pixel。不失一般性,设CCD 传感器上每像素的高度是s 毫米, pixel(6-11) 将式(6-11)代入式(6-10),则式(6-10)改写为, (6-12)从式(6-12)可以看出,X 这个因子项,而对同一图像中的所有点 这个共视觉心理学在计算机视觉中的应用研究 100 同因子项约掉,故各图像点对应点的相对三维坐标为: (6-13)如果用数码相机摄影,从图像文件的元数据(Metadata)中,可直接得到f(Focal length, 一般以毫米表示)。这样,式(6-13)中只剩下因子s 无法从图像数据中得到。 下面介绍一种简单的标定s 的方法。 设输入图像是直立,图像矩阵维数为mn (宽高),单位为像素,坐标原 点在图像矩阵的左上角,成像时保证像平面与实际地面垂直。同时设图像地面 ),则对上一章中式(5-6)进行整理可得, (6-14)这里,z 的感知深度。在摄影时,对实际地面上的某显著点测量可准确得到 的值。其它数据也是非常容易得到的。只需要一个点深度值就可以对s 进行标定。在实验或实际工作时,往往测量多个显著点的深度值,统计平 均,以减少测量误差。一部相机,只要一次标定。这样,对标定好的相机,仅 使用图像数据信息,运用式(6-13),就可直接从单幅二维图像进行相对三维重建。 6.4 实验结果与分析 实验主要包括两部分。第一部分用式(6-14)对参数s 进行标定实验。标定时, 用同一相机以不同的相机高度拍摄两幅(或多幅)。先用一幅图像对参数s 标定, 再用另一幅进行验证。参数s 验证的过程实质上是运用式(5-5)或式(5-6)求图像各 标定点的绝对深度。第二部分用标定的相机参数s 进行三维重建实验。为了便于 与测量值比较,实验时测量了相机高度,运用式(6-12)进行绝对三维重建。使用 不同的型号的数码相机拍了一些图像,并对每张图像中显著点(加了标签的点) 的三维坐标进行了测量。空间坐标轴的选择见图6-5。 101 6.4.1 Nikon-E3700 相机参数s 标定 图6-7(与图5-5 是同一张图)是Nikon- E3700 CCD 相机拍摄的。各深度测量 点如图标示,各点对应的深度值见表6-1。在拍摄时,保证像平面与实际地面 是垂直的。图像的大小为 20481536 像素(宽高),原点在图像矩阵的左上 相机高度0.75米。尽管只用一个深度点就可对参数s 标定,但为了降低随机 误差,提高精度与可靠性,本章用式(6-14) 对多点分别标定,并取各点平均值 作为最终的标定结果。实验结果见表 6-1, 从中可以看出各点的计算结果可以被 认为是相同的,因为Relative stdev(s)为1.89%(小于5%)。 表6-1 Nikon-E3700 CCD数码相机的参数s 标定结果,各图像点来自图 6-7。注:n =1536 像素; –768;相机高度h 5.4mm; /(实际PDhp-pixel RelativeStdev(s) 按式(5-7)计算。 序号 p-pixel(像素) 实际 PD Closestpoint 1536 768 2.80 0.00188337 1399631 3.25 0.00197489 1188420 5.00 0.00192857 1175407 5.25 0.0018954 1058290 7.50 0.00186207 985217 10.00 0.00186636 943175 12.50 0.00185143 926158 13.60 0.00188477 86496 22.50 0.00187500 10 Bush 83870 31.00 0.00186636 11 Post 82254 39.85 0.00188206 12 Bush 81345 48.70 0.00184805 Avg(s) 0.00188486 Relative Stdev(s) 1.89% 视觉心理学在计算机视觉中的应用研究 102 6-8对表 6-1 Nikon-E3700相机参数 的验证的显著点,图像平面是倾斜的,相机高度1.2m。图像的拍摄地点在北京交通大学博士生 6-7相机像平面垂直时的图像,图像垂直中轴线上的显著点用于 Nikon-E3700 参数 定,相机高度0.75 m。图像的拍摄地点在北京交通大博士生 号宿舍楼前。103 为了验证表 6-1 计算结果的正确性,用 Nikon-E3700 CCD 数码相机拍了另 外一张图像如图6-8 所示,相机距地面的高度为1.2 米,图像平面不与实际地面 垂直,图像中间线偏离水平中轴线的程度D ml-hma 8.46%(向图像底端偏),其余相机设置与图 6-7 相同。用式(5-5)分别计算了图 6-8 中各标注点的绝对深度(记 为恢复PD,恢复PD p-pixel),参数s 使用表6-1 中标定的值),并与 各点实际测量的深度值(记为实际 PD)进行了比较,结果列于表 6-2 可以看出,恢复PD 与实际 PD 吻合得非常好,这表明表 6-1 中计算出的参数 0.00188486毫米/像素,将在后面的三维重建实验中被使用。 表6-2 对表 6-1 Nikon-E3700CCD数码相机参数s 的验证结果,各图像点来自图6-8。注: =1536像素;h 1.2m;焦距 0.00188486毫米/像素;恢复PD p-pixel),具体计算过程见第五章。 序号 p-pixel(像素) 恢复 PD 实际PD Closestpoint 1514 681 5.05 5.00 1287454 7.57 7.50 1273440 7.81 7.75 1174341 10.08 10.00 1106273 12.59 12.50 1060227 15.15 15.00 1045212 16.22 16.10 970137 25.09 25.00 957124 27.73 27.50 10 Bush 935102 33.71 33.50 11 Post 91481 42.44 42.35 12 Bush 89562 55.45 55.70 13 Post 89158 59.27 59.30 视觉心理学在计算机视觉中的应用研究 104 6.4.2 Canon DIGITAL IXUS 750 相机参数s 标定 图6-9(与图5-9(F15)是同一张图)是用Canon DIGITAL IXUS 750 数码相机拍 摄的。各深度测量点如图标示,各点对应的深度值见表6-3。在拍摄时,保证像 平面与实际地面是垂直的。图像的大小为30722304(宽高,mn)像素, 原点在图像矩阵的左上角, 成像时相机离地面的高度为1.5 米。用式(6-14) 中各标示点分别标定相机参数s,并取各点平均值作为最终的标定结果。实验结果见表 6-3,从中可以看出各点的计算结果可以被认为是相同的,因为 Relative stdev(s)为1.45%(小于5%)。 表6-3 Canon DIGITAL IXUS 750 CCD 数码相机的参数s 标定结果,各图像点来自图 6-9。注: =2304像素;h p-pixe –1152;相机高度h 7.7mm; /(实际PDh p-pixel Relative Stdev(s) 按式(5-7)计算。 序号 p-pixel(像素) 实际 PD Line1995 843 6.40 0.002140792 Tree11871 719 7.40 0.002170808 Edge1612 460 11.87 0.002115307 Tree21541 389 13.65 0.002175203 Tree31423 271 20.00 0.002130996 Tree41362 210 26.00 0.002115385 Tree51298 146 38.25 0.002068225 Tree61274 122 44.32 0.002136104 Tree71258 106 50.32 0.002165387 10 Tree8 1247 95 56.35 0.002157568 11 Tree9 1239 87 62.10 0.002137820 Avg(s) 0.002137599 Relative Stdev(s) 1.45% 105 图6-10 对表6-3 CanonDIGITAL IXUS 75 相机参数s 的验证的显著点,图像平面是倾斜 的,相机高度 0.87m。图像的拍摄地点在北京交通大学 号学生宿舍楼前。图6-9 相机像平面垂直时的图像,各显著点用于 Canon DIGITAL IXUS 750 参数s 的标定,

http://airgomusic.com/tuxiangjihexue/649.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有